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A fast, low memory cost, Krylov-space-based algorithm is proposed for the diagonalization of large
Hamiltonian matrices required in time-dependent Hartree—F¢EPOHF) and adiabatic
time-dependent density-functional theo(yDDFT) computations of electronic excitations. A
deflection procedure based on the symplectic structure of the TDHF equations is introduced and its
capability to find higher eigenmodes of the linearized TDHF operator for a given numerical
accuracy is demonstrated. The algorithm may be immediately applied to the formally-identical
adiabatic TDDFT equations. @000 American Institute of Physid$§0021-960600)30425-]

. INTRODUCTION single-electron density matriyp (with p2=p).*"*8 The
The prediction of photophysical and photochemical pro-' PHF and TDDFTl ﬁ'_?fld d|ffer(;nt dynamr:cal eqyatlolns Lor
cesses in molecules requires accurate computations of eg{7)- A conceptual difference between the two is related to

cited state surfacd€ Excited-states computations are nu- tN€ interpretation op(7). In the TDHF, p(r) is viewed as

merically much more expensive compared to their ground@" gpg)roxmatlo_n for the actual single-electron density
state counterparts. However, the first-principles modeling of"atrix,” whereas in the TDDFp(7) is an auxiliary quantity
excited state dynamics requires substantially reduced infoonstrained to repzrcigiuce the correct electronic charge distri-
mation on the excited state many-electron wave functiongdution at all tl_megl. *“The TDDFT is formally exact. How-

Keeping redundant information greatly increases the numerf€Ver, in practice it yields only approximate results since ex-
cal effort in standardb initio computations. It is, therefore, act expressions for the exchange-correlation energy

desirable to develop approaches aimed at the direct complxd N(r)] and the corresponding potenti|(r,[n]) in the
tation of relevant quantities, eliminating unnecessary inforKS scheme are not available. An advantage of the TDHF

mation from the outset? approach is thap(7) provides not only the electron charge
The quantities of interest, i.e., excited-state adiabaticlistribution but the optically-induced coheren¢ebanges in
surfaces and nonadiabatic coupling terms can be obtaineghemical bond ordgras well. The latter have been shown to
from the purely electronic optical response functions calcube essential for understanding optical properties of conju-
lated for different but fixed molecular geometries. Two ap-gated molecules and for the first-principles derivation of
proaches are widely used for the direct computation of th&imple models for the photoinduced dynami@sg., the
electronic response, while avoiding the explicit calculationFrenkel—exciton modgf® A close resemblance between the
of excited states: the time-dependent variational principlef DHF and the TDDFT(especially its adiabatic versiphas
(TDVP),>® and the time-dependent density-functional theorybeen established recently using a formulation of the KS den-
(TDDFT)’"* in the Kohn—-Sham(KS) form.*?>*3 In both  sity functional theory(DFT) based on the density matrix
cases one follows the dynamics of a certain reduced set dg#ther than on the KS orbitafsThis formal similarity makes
parameters representing the system driven by an externélpossible to apply the same algorithm for solving the equa-
field. In the TDVP these parameters describe a trial manytions for the optical response in both cases.
body wave function whereas in the TDDFT they describe a  The computational bottleneck in applying the TDHF and
set of KS orbitals. TDDFT to large moleculds® is the diagonalization of a
The time-dependent Hartree—Fo¢KDHF) approach large (N?/4)x (N?/4) Hamiltonian matrixL, N being the
provides a powerful tool for studying the optical response ofniumber of single-electron orbitatd?° This difficulty can be
conjugated moleculeé$2® The TDHF equations are based overcome by applying fast Krylov-space algorithms for the
on the TDVP where the trial wave functions belong to thediagonalization of large matricés?? The Krylov-space is
spaceM of single Slater determinants® Since the TDDFT defined as the space spanned on the vedtts, with n
can be formulated as the dynamics of a single Slater deter=0,1,... ,N’, v being some initial vector. In this article we
minant based on the KS orbitals, the two approaches follovdiscuss three types of Krylov-space based algorithms. The
the dynamics of a similar quantity: a single Slater determi-Lanczos algorithm computes effectively the lowest eigen-
nant that can be unambiguously described by an idempotentlue and the corresponding eigenvector of a large métrix.
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Since the matriced that need to be diagonalized in the algorithm with the deflection procedut®LA-D) will be
TDHF or adiabatic TDDFT approaches are non-Hermitiancompared with the IDSMA with the orthogonalization pro-
the standard Lanczos algorithm is not applicable, and theedure(IDSMA-O). We find the former to be superior. We
oblique Lanczos algorithfOLA) should be useé! The sec-  argue that this reflects the superiority of the deflection over
ond, Davidson’s algorithm(DA), finds several lowest- the orthogonalization method for the higher eigenvalues,
frequency eigenmodes of the Hamiltonian matrices whichrather than the advantages of the OLA compared to the
appear in the TDHF and adiabatic TDDFT which are “Her- IDSMA for the lowest mode.

mitian” with respect to an antisymmetric ‘“scalar This article is organized as follows. In Sec. Il we intro-
product.”>*~2% A third method for computing the lowest fre- duce the deflection procedure. In Sec. Ill we review the lin-
guency eigenmode of a large Hamiltonian matrix is based ogar problem that arises in solving the linearized TDHF equa-
the iterative density matrix spectral moments algorithmtions and briefly discuss the applicability of the Krylov-
(IDSMA).152 Al three algorithms show~N? scaling of  space-based algorithms. In Sec. IV we present numerical
memory and~ N3 of computational time, resulting from an calculations for two molecules, the M@ protonated Schiff
Nx N matrix multiplications. However, the scaling prefac- base, and polyp-phenyleng vinylene (PPV) with five phe-
tors are different. The Davidson type algorithms, especiallynyl rings. Details of the implementation of the oblique Lanc-
the recently improved versiod€®?” are extremely fast but zos algorithm to the linear TDHF problem are given in Ap-
memory-intensive, since one needs to keep all the previougendices A-C.

iterations for the eigenmodes throughout the iteration proce-

dure. Consider for example the computation of the lowes{|, COMPUTING SEVERAL LOWEST EIGENMODES:
eigenmode of a matrix using the Davidson iteration in a 200THE DEFLECTION PROCEDURE

dimension Krylov spacédefault maximum dimension in the
GAUSSIAN 99.2° To improve the accuracy we need to calcu-

late the 201st trial Krylov vector, which should be orthogo- computing several lowest eigenmodes of the Hamiltonian

nal to all others. This requires the storing of all previous zoomatnx L. The calculation makes use of the symplectic struc-

vectors. On the other hand, to compute the 201st vector i;twure, defined as an antisymmetric scalar product in the space

,15
the oblique Lanczos procedure we only need the 200th angf the TDHF modes:
the 199th vectors: by orthogonalizing the 201st to the 200th (£ \)\=Tr{y*[£,p]}, (2.1
and 199th, it automatically becomes orthogonal to all previ- —
ous vectors. We only need to keep in memory two vector§Vherep is the ground state single-electron density matrix.
rather than 200. This is the memory advantage of Lanczo¥ &J-Hermitian matrix: for two eigenmodes, and¢, of L
over Davidson’s. However, the Lanczos may require a 400Vith eigenvalue) ,#Q, we have(¢, ,¢£,)=0.L also has a
Krylov-space dimension to obtain an approximate eigen®roperty that ifL¢,=0,¢, then LE_,=—€,f_, where
value with the same accuracy as Davidson’s in a 200 spacé—»=¢, - This implies that once the lowest pair of eigen-
dimension, Davidson’s algorithm thus converges faster anfodesé,&; with ;>0 is found, one can try to work in

requires generally less computational effort than the obliqudhe Subspace orthogonal ., and find the lowest eigen-
Lanczos. mode there. This procedure is, however, numerically un-

In this section we describe the deflection procedure for

The OLA is slower but much less memory consumingStable. _ _ _
compared to the Davidson algorithm. In addition it is not  1he deflection procedure described below is stable.

stable for some initial vectors, and it should be restarted When applied to a Hamiltonian matrixit can be formulated
with a different value ob, once it diverges. The IDSMA is  as follows: Suppose we have found fhiewest eigenmodes
stable, has low memory requirements, but is 2—4 time$=1:6+2,...,+j. We introduce the deflected operatay
slower than the Lanczos. None of these three algorithms is, j
therefore, a universal method of choice, and they could all be Lg4é=Lé&+ E A{ELEEN—ENEEND, (2.2
most suitable for specific applications. v=1

In this article we extend the OLA and IDSMA to obtain where the modeg, are normalized{¢,,£,)=1 for v>0.
a low memory cost algorithm for computing the lowest few The operatot 4 has the same eigenmodeslasiowever the
eigenmodes. Since both algorithms converge to the lowedigenvalues of ¢., for v=1,...] are shifted:
eigenmode, the higher eigenmodes can be obtained succe&fid)f +(Q,+A). The next pair of eigenmodes df,
sively by finding the lowest mode in the subspace orthogona¢ . (; 1), thus corresponds to the lowest pairlgf, provided
to that spanned by the lower modes already found. Our preA is large enough. This pair can be found by applying either
vious applications of this orthogonalization proced(using  the OLA or IDSMA toLg.
the IDSMA and the TDHF equatiohshowed that the pro- Both the deflection and the orthogonalization methods
cedure is unstable, leading to the accumulation of numericadre based on the compatibility of the operatomwith the
error for the higher modes. To overcome this difficulty we symplectic structur@.The fact that the former is stable and
implement here a deflection procedure that involves the arthe latter is not can be rationalized as follows. Consider first
tisymmetric “scalar product” (known as the symplectic the orthogonalization method. Suppose we have found the
structure.® lowest mode. To obtain the next mode, we try to work in the

Numerical applications are made for the TDHF, but oursubspace orthogonal to the first mode. By looking for the
results apply to the TDDFT as well. The oblique Lanczoslowest mode in this subspaceither IDSMA or Lanczoswe
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start to approach the next mode. However, because of nising Egs.(3.3 and (3.4) it is straightforward to prove
merical errors, the vector has some residual component diermiticity with respect to our scalar product, i.e.,
the lowest mode and the iterative procedure eventually cor(-LTg,n)E(g,f_n)_

verges to the lowest mode. In practice we found a quasicon-  The spectrum of (and |“_‘r) consists 0fM,/2 pairs of

vergence: iterations lead to some neighborhood of the ”e)gonjugated eigenvectors with eigenfrequencie§),. In-
mode, the system stays in this neighborhood for a while bugjeeq Eq(3.1) is equivalent to !

finally converges to the lowest mode. The accuracy of the

next mode is therefore determined by the size of the quasi- I:~§V= —Q,,EV, (3.6
convergence region, and it decreases rapidly for higher fr. — —
modes. In the deflection method, on the other hand, we find L '[&,.p1=Q,[&.p], 3.7

the lowest mode of an operator which has been deflected ~y~ — ~ —
from the “correct” one. There are no convergence problems, L&, p]= ~ QL& 0], 3.8
since we are always searching for the lowest mode of this  Only the few lowest excited states are necessary to com-
deflected operator. The higher modes are therefore founpute visible and UV electronic spectta!® The Lanczos al-
with about the same accuracy as the deflection operator, igorithm is the method of choice for this purpose when the
practice with machine precision. The superiority of the de-matrix is sparse. It is important to note that even though the
flection over the orthogonalization method is clearly demon-matrix L is, in general, not sparse, it shares one useful prop-
strated in Sec. IV. erty with sparse matrices: the evaluation of its action on a
vector does not require storing all matrix elements in

memory, and can be readily done using E2}2). We have
lll. KRYLOV SPACE ALGORITHMS FOR THE TDHF employed the following novel method for computing the

EIGENVALUE PROBLEM productﬁg. The part ofL which contains the Fock matrix is

The TDHF equations of motion for the time-dependentcalculated in the Hartree—Fock molecular orbitals basis, in

Sing|e-e|ectr0n density matfix® lead to an eigenva|ue prob- which the Fock matrix is diagonal. However, the evaluation
lem of V(p) is carried out by converting into the atomic-orbital

. basis, in whichV is sparse, and then transforming the results
LE,=Q.8,, (3.)  pack to the molecular-orbital basis. We note that in the
where &, are electronic mode density matrices afig are  |DSMA, which is also a sparse matrix method, bétlandV
optical transition frequencies. The Liouville operatoris are evaluated in the atomic orbital basis.
non-Hermitian {#L") and is defined by°

Lé=[F,£1+[V(&),p]. (3.2 | | o

— ) _ ] We have tested the deflection algorithm by applying it to
Herep is the ground state density matrix, afds a Fock o molecules, the NgH; protonated Schiff base and poly
matrix of sizeN=N,+N;. N is the total basis set siz8l, (p-phenylene vinylene(PPV) with five phenyl rings. We

andN;, are the numbers of particleccupied and hole(vir-  seq the INDO/S Hamiltonian for our calculations, obtained
tual) orbitals. The particle and hole molecular orbitals arefom the zinoo code28-3°

eigenvectors of the Fock matrix, which is diagonal in the  Figyre 1 illustrates the near-exponential convergence of

basis of these orbitals and may be obtained using thg,e gplique Lanczos algorithm with the number of iterations
Hartree—Fock iterative proceduftThe Coulomb operatdf o, ppy. We have plotted the difference between the energy

IV. NUMERICAL RESULTS

obeys at a given iteration step and the converged energy value,
(ENV(7)=(V(&),n), (3.3 (Qy)n—(Qy)o?, vs the number of iterationsn._ The two
) ) _ curves pertain to the lowest mode and a higher mode of
where the scalar product of two arbitrary matriegandé is excitation.

defined as £, ”)_ETr(.gT”)' o , 5 The top panel of Fig. 2 shows the oscillator strerfgik.
The_ dimensionality of the L|ouvn!e quoe is M=N", the energy(), obtained for the NgH. protonated Schiff

A physical subspaceC,, of all matrices limited to only using OLA-D (20 modes, dashgdDSMA-O (15 modes for

pg\rticle—hole and holg—particle .orbital pairs has dimension-each of the three polarization directions, doffeohd a single

a"“( M>=2NyNy, and is an invariant subspace of the Opera'configuration interaction(SCI) calculation (using all 256

tor L.® The electronic oscillators algebra developed in Ref. Smodes, solid ling The basis size for this molecule is 32. The

reduces the number of variables to i subspace. For any  three calculations virtually coincide. The middle panel shows

matrix £, the commutatof §,p] belongs toLy,, and the the relative difference between the OLA-D and the SCI cal-

double commutato[[f,;],;] is a projector ontaC,,. The culation, and the bottom panel depicts the relative difference

following relation also holds inCy,: between the IDSMA-O and the SCI. The largest relative dif-
_ _ ferences occur in regions where the oscillator strength is
(&m=&pl.[n.p)), (34 close to zero. Both Krylov algorithms give equally good re-

sults in this test case, and compare well with the SCI.
) o The PPV oligomer with five phenyl ringébasis size
LTe=[&F]+V([&p]). (3.5 174) has been computed using OLA-[30 mode$ and

and the operator adjoint to is
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Number of iteration n FIG. 3. Linear absorption spectrum for PPV, obtained using the IDSMA-O

FIG. 1. Convergence of the oblique Lanczos algorithm for PPV. (top pane) and the OLA-D(bottom panel

IDSMA-O (9 modes for each of the three polarization direc-fily to the merits of the deflection compared with the or-
tions). The results shown in the top and bottom panel of Fig.thogonalization method. The CPU time in this calculation for
3, respectively, are very close for both algorithms for thethe IDSMA-O was approximatgl1 h for each of the three
modes below 4 eV. However, for higher energies the OLA-DrUns, and 5.68 h for OLA-D at full accuradye., the algo-
code was able to resolve several closely-lying modes whickithm runs until the energy has converged to machine preci-

were not resolved by the IDSMA-O. We attribute this prima-Sion, 14 digity. Here and below, CPU timing results are
given using a single MIPS R10000 175 MHz processor on a

250 MB RAM SGI Octane workstation.
o The effect of reducing the accuracy of the oblique
20 Lanczos computation is investigated for the same PPV oli-
00 ——sol gomer in Fig. 4. The solid curve repeats the results obtained
’ for full accuracy(machine precision which is identical with
the spectrum in the bottom panel of Fig. 3. The dashed line
was obtained by terminating the calculation as soon as
Q,—Q, <10 2% eV, wheren denotes the iteration step.
The reduced accuracy calculation took 1.58 h, i.e., only 28%
of the more accurate calculation. However, the figure shows
clear differences, particularly between 5-6 eV, where we
have to resolve several closely-lying modes.
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We have examined the oblique LancZband Iterative
DSMA algorithmg®?° for the non-Hermitian eigenvalue
problem that appears in the TDRIEnd TDDFT computa-
tions of electronic response functions. Although scaling of
, the overall memory and computational effort with system
oz d—r . T T T g T size is similar for these and analogous algorithfesy.,

Energy @ [eV] Davidson'$®~?° and filter band"®3, the nature of targeted
spectroscopic observables and available computational re-
FIG. 2. Top panel: Linear absorption spectrum for the protonated SchifSources may make one of them preferable for a particular
bazeI:Dtg?VI ?Ig’ daslft\ed, and dtc}tteld "tf;]es rhepfesem Singﬁ@'rOLA-D,d_ ~application. To illustrate this point, let us compare the reso-
e ESPechiel, e ee cnes e Ao n9=inant and siatc response in conjugated molecfEThe
SCl results. Bottom panel: Relative difference between the IDSMA-O and'€SONant response requires an accurate calculation of the ex-

the SCI resullts. citation energies in the chosen frequency range. In this case
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APPENDIX A: LANCZOS ALGORITHM FOR
3000 HERMITIAN MATRICES
— 2500 The Hermitian Lanczos alg(A)rithm finds a few lowest ei-
< genvalues of a Hermitian matrid by starting with an arbi-
2 2000 - trary vectorvy and constructing linear combinations of vec-
g tors vmzﬂmvo, m=0,1,. ... Thecoefficients in the linear
@ combination ofv,, are found using the Ritz variational
S 15004 | proceduré??which guarantees to yield the best approxima-
= tion to the lowest eigenvalue ¢f that belongs to a Krylov
& 10007 subspace. This subspacé.() spanned by the vectors
o vo...Um, @pproximates an invariant subspace Fofwith
500 1 Jli. increasing accuracy as the number of vectors is increased.
|l k A simple recursive procedure allows building a set of
0 he orthogonal vectorsv,, that span the same Krylov subspace.
Finding each new vectow,,, ; only requires the two previ-
2500 4 T ous vectorsw,, andwj,,_ ;:%2
A4 0 1 2 3 4 5 6 7 8 A
Energy Q [eV] Wi+ 1= Bt 1 (HWim— Wi = BrWim-1). (A1)

At each stepm, the pair of coefficientsy,,, and 8, is chosen

to preserve orthonormality o, ; with respect tow,,
andw,_,. The recursion Eq(Al) ensures thatv,, form

an orthogonal set and that the Rayleigh—Ritz matrix
Tij=(w; ,Hw;) is symmetric tridiagonal, with the diagonal
émd subdiagonal given by the coefficienis, and 8,,, re-

FIG. 4. OLA-D calculations for PPV, obtained with full accuratsolid
line) and reduced accuracy, as explained, in the tdashed ling

the OLA-D approach, that provides the eigenvalues an :
) o ) ; .. Spectively.

eigenvectors of the Liouville operator with high precision, . :

X The matrixT;; can be viewed as the result of the or-
should be preferable. On the other hand, the static response o T
does not require accurate calculations of the excitation frethogonal projection of the full matrixi onto the subspace
quencies, but rather the transitions with strong dipole moXm- It can be written in matrix form
ments that contribgte significantly to the polarizability. Tm:W; |:|er (A2)
OLA-D computed eigenstates will help to calculate only a . _
part of the response Coming from the covered frequenCyVhereWm is the rectangu_lar matrix Whose- columns _are the
range. The DSMA algorithm that divides the response funcVectorswy, ... Wp,. The eigenvalues of,, give approxima-
tion into several dominant effective contributions from thetions to the eigenvalues ¢ and the corresponding eigen-
whole spectrum should then be the method of choice. vectorsy give the coefficients of expansion of the eigenvec-

Each diagonalization algorithm requires a separate protor y of H in the basis ofv;, v =Wy. Indeed, ifTy=\y,

cedure that excludes the already computed eigenmodes froffe, W, ,I:|me—)\me)=0, i.e., the residual vector is or-
the Krylov space when calculating the next eigenvector. WGEhogonaI tokC,,.

have demonstrated that the deflection procedure finds a set of The recursive relatioriAl) provides a great computa-
lowest TDHF eigenmodes with more stability and accuracyjong) advantage to the Lanczos algorithm, making it pos-
compared to the orthogonalization method. The computasipe to apply this technigue to very large matrices, since the
tions of elect_ronic spectra foc_us on the_ Iow-frgquency SPeCrequired memory does not grow with the number of itera-
tral range which can be effectively obtained using the deflections. The problem of loss of global orthogonality due to

tion procedure. The OLA-D method allows the computationcomputer roundoff errors has been extensively stddiadd
of a few hundreds of low-frequency electronic transitions injs not addressed here.

large conjugated molecules covering pretty much the entire
visible-UV spectrum(1-8 e\).

Finally we note that the present article does not intend t(ﬁ|
demonstrate the largest system for which the oblique Lanc-
zos procedure my be applied. Our PPV5 calculations simply  Several existing variations of the Lanczos and Davidson
demonstrate the comparison of OLA and DSMA. These calimethods are applicable to non-Hermitian eigenvalue
culations have only minor time<(2 min/stat¢ and memory problems?* The major difficulty with non-Hermitian matri-
(<2 MB) requirements on an R10000 SGI workstation.  ces is that, in general, no variational principle exists for their

PPENDIX B: LANCZOS ALGORITHM FOR NON-
ERMITIAN MATRICES
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eigenvalues, and therefore the Ritz procedure is not applivectors in the course of the iteration. On the other hand, the
cable. In addition, the Lanczos recursion E&1), which is  oblique projection does not always exist if the subsp&ge
based on the Hermiticity dfi, does not yield an orthonormal has at least one vector orthogonal K&, The algorithm
set of vectorsv,, when applied to a non-Hermitian matrix breaks down irreversibly in this case. _
Lanczos has suggested a non-Hermitian algorithm that OLA has an essential advantage in memory require-
partially preserves the advantages of Hermitian Lanczos rél€nts with respect to similar algorithms frequently used for
cursion Eq(A1).2! Instead of building an orthogonal basis of non-Hermitian matrices, such as the Arnoldi or Davidson’s
subspacek,,, it constructs a pair of biorthogonal basesMethods. The Arnoldi algorithm deals with the non-
{0 Wy} that span two Krylov subspacé, andlCL of the He_rm|t|an problem by pundmg an ort_horyormal basiskip,
operatorsL and LT, respectively. The algorithm starts with using the Gram—Schmidt orthogonalization procedure
two arbitrary vectorsvy and wg, normalized such that

. . . m
(vg,Wp)=1, and uses the following recursion relations: o
Um+l_hm+1,m -

va_igj_ himvi (B?)

Um+1:5%;}(Lvm_amvm_ﬂmvmfl)a (B1)
(B2) The coefficientd,,; form the Rayleigh matrix, i.e., the result
o of the projection of the matri¥i onto the subspac€,. The
the coefficientsaey,, B, and 6, are chosen at each steép  gjgenvalues of Rayleigh matrix provide approximations to
such that {1, Wm) =(Um Wm+1)=0 and Om1,Wme1)  yne eigenvalues ofi and the corresponding eigenvectors
:1'. AS in the case of Herm|t|ar) Lanczos glgonthm, this ISgive the coefficients in the expansion of the corresponding
sufficient to ensure the global biorthogonality . A
eigenvectors oH in terms ofv,,.

(Vm Wpn) = Smn- (B3) To find the coefficientsh;,, in Eq. (B7) one needs to

rl§now the scalar products of each new vector with all previ-

ously computed vectors. Therefore, the previously computed

combined with a special criterion for the “best” approxima- ; : o
tion to the eigenvector. Due to the lack of minimum prin- vectors must be stored in memory or hard disk, which limits
) the matrix size.

ciple, the Euclidean projection onto a subspace is not de- . L
P pro) b For a non-Hermitian case, the best approximatiom

fined. With the biorthogonal basis E(B3), it is natural to : . ;
define an oblique projection intf5,,, orthogonal tok . the subspack,, is defined as the one that gives the smallest

This is why the algorithm is usually called an oblique Lanc- Euclidean norm of the residual vector Ho —v|Hol/[v]. In
zos algorithn?? other words, the best approximation is given as a Euclidean

The oblique Lanczos algorithm has a clear Computaprojection of the exact eigenvector onto the Krylov subspace
tional advantage since the approximations to the eigenvaluégm-
of L are given as the eigenvalues of the tridiagonal matrix

_p-1 i
Wint1= Bmt 1(LTWm_ aEWm— OmWm—-1),

The global biorthogonality becomes an advantage whe

The Hermitian Lanczos algorithm is mathematically the
best method for approximating extreme eigenvalues, when

a; B no extra information about the matri is given besides the
5, a, Ps algorithm to compute the matrix-vector products. When

(B4) some useful information about the internal structurddois

T= X e .
available, preconditioning techniques can speed up the con-
Sm-1 @m-1 Pm vergence. One of the most widely used methods of this class
Sm  am is the Davidson algorithAi that utilizes the information

about the diagonal elements df and requires fewer itera-
R tions when the diagonal elements if are dominant. The
Tij=(w;,Loyj), (B5)  idea of the Davidson preconditioning is simple. As in the
Lanczos algorithm, the solution of the eigenvalue problem is
found by projecting the matrix onto a certain subspé&ge
T=W:rnI:Vm. (B6) that expands with the number of iterations. In the Lanczos
. algorithm, the spacé&’,,, is augmented at each iteration step
HereV, andW,, are the rectangular matrices constructed Ofby the residual vector,,=FHw,—Aw,.. In contrast, the

ve_ctorSUi _and Wi, res_pectlvely. In analogy_wnh Equ).’ IPavidson algorithm augments the subspkgeby a different
this equation can be interpreted as the oblique projection o ~ . o .
vectorr,,, obtained fronr,, by multiplying it by a diagonal

P i

- or_lrtgesuebqsfaza;ﬁr;, ;r:tr;\c;golgzij;olfom '(N_ AV, y— AV.y) matrix (D—)\m)fl, whereD is the diagonal part off. The

=0, which means tﬁat the residual vecté),r is chnrthogorTal to aIPawdson algorithm requires the knowledge of the entire ba-
vec,torsw- Thus, an eigenvalue df,, gives the approxima- >1S of the subspacEm_ which imposes heayy memory re-

] b . m quirements, although it makes the calculations substantially
tion to the elgAenvaIue ok, and the vectow =Vy to the |ogg time-consuming.

eigenvector ofL, subject to the condition that the residual  The Davidson algorithAf and its variationSare variants
vectorLv —\v is orthogonal to all vectors/,,. In order to  of Arnoldi’s method with diagonal preconditioning. Both Ar-
construct the matrix ,, one needs to keep only two pairs of noldi's and Davidson’s methods suffer from the same

Indeed, from Eq(B2), the matrix elements;; are given by

which in matrix form reads
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memory constraints which make them hard to apply to very  The diagonal part of in the molecular-orbital represen-
large matrices. tation is dominant because the major contribution of the tran-
sition frequencies comes from the energy differences of filled
APPENDIX C: IMPLEMENTATION OF THE OBLIQUE and_occupied molecular orbitals. Thus the diagonal _approxi-
METHOD FOR TDHF mation corr§§p0nds to_ the HOMO-LUMO apprOX|mat|or_1
for the transition, and gives reasonable guess for the starting
The condition Eq.(B3) only determines the products vector.
fm=Bmdm. The absolute values @, and 5., can be made Implementation of the oblique Lanczos recursion Eq.
equal by the proper choice of the normswgf andwp,. For  (B2) requires evaluation of the vector products with bath
areal matrid_ the coefficientsry,, B, andon are real. The  and[* at each step. This task can be simplified, sibéean
matrix T is, in general, not symmetric, since some of thebe expressed in terms &f
valuesf,, are negative. Let us consider the case when all
productsf,= B8md,>0. The matrixT,, can then be made o
symmetric, and therefore its eigenvalues are real. LTe=[L[&,p].p]. (C3
The symmetrict Q) form of the TDHF spectrum can be
preserved in the following way: The TDHF operaforde-  Here Egs.(3.2 and (3.5 and the Hartree—Fock equation
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versa. This means that if we choose, for example, two sym —
metric matrices as starting vectarg andwg, then all vec-
torsv,; andw,; will be symmetric(as matricesand all the
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